

EMBEDED PILE WALL ANALYSIS & DESIGN

In accordance with BS EN1997-1:2004 - Code of Practice for Geotechnical design and the UK National Annex

Tedds calculation version 2.0.02

Design summary

Combination 1

Description	Unit	Provided	Required	Utilisation	Result	
Total length required	mm	14000	11069	1.265	PASS	
Maximum moment in pile 458.8 kNm/mx2.5m(King Post spacing)=1147KNm						
Maximum shear in pile 395.6 kN/mx2.5m(King Post spacing)=989KN						

Combination 2

Description	Unit	Provided	Required	Utilisation	Result	
Total length required	mm	14000	12038	1.163	PASS	
Maximum moment in pile 431.2 kNm/mx2.5m(King Post spacing)=1078KNm						
Maximum shear in pile 353.6 kN/mx2.5m(King Post spacing)=884KN						

Geometry

Length of pile provided	H _{pile} = 14000 mm	No. of different types of soil	$N_s = 2$
Retained height	$d_{ret} = 4000 \text{ mm}$	Unplanned excavation depth	$d_{ex} = 0 \text{ mm}$
Total retained height	d _s = 4000 mm	Angle of retained slope	β = 30.0 deg
Water depth retained side	d _w = 8000 mm	Water depth retaining side	d _{wp} = 4000 mm

Loading

Variable surcharge $p_{o,Q} = 5.0 \text{ kN/m}^2$

Soil characteristic properties table

Soil	ϕ'_k (deg)	δ_k (deg)	γ_m (kN/m ³)	γ_s (kN/m ³)	h (mm)
1	28.0	18.7	10.0	19.0	10000
2	30.0	20.0	15.0	20.0	7000

Partial factors on actions - Section A.3.1 - Combination 1

Perm. unfavourable action	$\gamma_{\rm G} = 1.35$	Perm. favourable action	$\gamma_{G,f} = 1.00$
---------------------------	-------------------------	-------------------------	-----------------------

Vari. unfavourable action $\gamma_Q = 1.50$

Angle of shearing resistance γ_{ϕ} = **1.00** Weight density γ_{γ} = **1.00**

Design properties table - combination 1

Soil	φ ' d	δ_{d}	γm.d	γs.d	Ka	Kp
1	28.0	18.7	10.0	19.0	0.823	5.151
2	30.0	20.0	15.0	20.0	0.798	6.105

Tekla Tedds	Project Godre'graig School Spoil Options			Job no. 50084		
Burroughs	Calcs for Embeded Retaining Wall			Start page no./Revision		
	Calcs by BG	Calcs date 08/07/2021	Checked by KJ	Checked date	Approved by	Approved date

Overburden on active side

OB at 0 mm - soil 1	$OB'_{a11} = 7.5 \text{ kN/m}^2$	OB at 4000 mm - soil 1	$OB'_{a21} = 61.5 \text{ kN/m}^2$
OB at 8000 mm - soil 1	OB' _{a31} = 115.5 kN/m ²	OB at 10000 mm - soil 1	OB' _{a41} = 140.3 kN/m ²
OB at 10000 mm - soil 2	$OB'_{a42} = 140.3 \text{ kN/m}^2$	OB at 10065 mm - soil 2	OB' _{a51} = 141.2 kN/m ²
Overburden on passive side			
OB at 4000 mm - soil 1	$OB'_{p21} = 0.0 \text{ kN/m}^2$	OB at 8000 mm - soil 1	$OB'_{p31} = 40.0 \text{ kN/m}^2$
OB at 10000 mm - soil 1	$OB'_{p41} = 58.4 \text{ kN/m}^2$	OB at 10000 mm - soil 2	$OB'_{p42} = 58.4 \text{ kN/m}^2$
OB at 10065 mm - soil 2	$OB'_{p51} = 59.0 \text{ kN/m}^2$		
Pressure on active side			
Active at 0 mm - soil 1	$p'_{a11} = 5.3 \text{ kN/m}^2$	Active at 4000 mm - soil 1	p' _{a21} = 43.8 kN/m ²
Active at 8000 mm - soil 1	p' _{a31} = 82.3 kN/m ²	Active at 10000 mm - soil 1	p' _{a41} = 126.5 kN/m ²
Active at 10000 mm - soil 2	p' _{a42} = 123.5 kN/m ²	Active at 10065 mm - soil 2	p'_{a51} = 125.0 kN/m ²

Pressure on passive side

Passive at 4000 mm - soil 1	$p'_{p21} = 0.0 \text{ kN/m}^2$	Passive at 8000 mm - soil 1	p'_{p31} = 206.0 kN/m ²
Passive at 10000 mm - soil 1	p' _{p41} = 320.3 kN/m ²	Passive at 10000 mm - soil 2	p' _{p42} = 376.1 kN/m ²

Passive at 10065 mm - soil 2 p'_{p51} = **380.8** kN/m²

By iteration the depth at which the active moments equal the passive moments has been determined as 10065 mm as follows:-

Active moment about 10065 mm

Moment level 1	$M_{a11} = 93.3 \text{ kNm/m}$	Moment level 1	M_{a12} = 648.5 kNm/m
Moment level 2	$M_{a21} = 414.8 \text{ kNm/m}$	Moment level 2	M_{a22} = 559.5 kNm/m
Moment level 3	M _{a31} = 115.1 kNm/m	Moment level 3	M_{a32} = 92.6 kNm/m
Moment level 4	$M_{a41} = 0.2 \text{ kNm/m}$	Moment level 4	$M_{a42} = 0.1 \text{ kNm/m}$

Passive moment about 10065 mm

Moment level 2	$M_{p21} = 0.0 \text{ kNm/m}$	Moment level 2	M_{p22} = 1400.5 kNm/m
Moment level 3	M_{p31} = 288.2 kNm/m	Moment level 3	M_{p32} = 234.5 kNm/m

Tekla . Tedd	S Project	Project Godre'graig School Spoil Options				Job no. 50084	
Burroughs	Calcs for	Calcs for			Start page no./Revision		
		Embeded Retaining Wall			;	3	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	BG	08/07/2021	K.I				

Moment level 4	$M_{p41} = 0.5 \text{ kNm/m}$	Moment level 4	$M_{p42} = 0.3 \text{ kNm/m}$
----------------	-------------------------------	----------------	-------------------------------

Total moments about 10065 mm

Total active moment $\Sigma M_a = 1924.0 \text{ kNm/m}$ Total passive moment $\Sigma M_p = 1924.0 \text{ kNm/m}$

Required pile length

Length reqd to balance mnts H = 10065 mm Depth of equal pressure $d_{contra} = 5046 \text{ mm}$ Add 20% below this point $d_{e \text{ add}} = 6023 \text{ mm}$ Minimum required pile length $H_{total} = 11069 \text{ mm}$

Pass - Provided length of pile greater than minimum required length of pile

Partial factors on actions - Section A.3.1 - Combination 2

Perm. unfavourable action $\gamma_G = 1.00$ Perm. favourable action $\gamma_{G,f} = 1.00$

Vari. unfavourable action $\gamma_Q = 1.30$

Angle of shearing resistance $\gamma_{\phi} = 1.25$ Weight density $\gamma_{\gamma} = 1.00$

Design properties table - combination 2

Soil	φ ' d	δ_{d}	γm.d	γs.d	Ka	Kp
1	23.0	15.1	10.0	19.0	0.877	3.516
2	24.8	16.2	15.0	20.0	0.858	3.977

Overburden on active side

OB at 0 mm - soil 1	$OB'_{a11} = 6.5 \text{ kN/m}^2$	OB at 4000 mm - soil 1	$OB'_{a21} = 46.5 \text{ kN/m}^2$
OB at 8000 mm - soil 1	$OB'_{a31} = 86.5 \text{ kN/m}^2$	OB at 10000 mm - soil 1	OB' _{a41} = 104.9 kN/m ²
OB at 10000 mm - soil 2	OB' _{a42} = 104.9 kN/m ²	OB at 10913 mm - soil 2	OB' _{a51} = 114.2 kN/m ²

Overburden on passive side

OB at 4000 mm - soil 1	$OB'_{p21} = 0.0 \text{ kN/m}^2$	OB at 8000 mm - soil 1	$OB'_{p31} = 40.0 \text{ kN/m}^2$
OB at 10000 mm - soil 1	OB' _{p41} = 58.4 kN/m ²	OB at 10000 mm - soil 2	$OB'_{p42} = 58.4 \text{ kN/m}^2$
OB at 10913 mm - soil 2	$OB'_{p51} = 67.7 \text{ kN/m}^2$		

Pressure on active side

Active at 0 mm - soil 1 $p'_{a11} = 4.9 \text{ kN/m}^2$ Active at 4000 mm - soil 1 $p'_{a21} = 35.3 \text{ kN/m}^2$

Tekla Tedds	Project Godre'graig School Spoil Options				Job no. 50084	
Burroughs	Calcs for Embeded Retaining Wall			Start page no./Revision 4		
	Calcs by BG	Calcs date 08/07/2021	Checked by	Checked date	Approved by	Approved date

Active at 8000 mm - soil 1	$p'_{a31} = 65.7 \text{ kN/m}^2$	Active at 10000 mm - soil 1	p' _{a41} = 99.3 kN/m ²
Active at 10000 mm - soil 2	p' _{a42} = 97.6 kN/m ²	Active at 10913 mm - soil 2	p' _{a51} = 113.5 kN/m ²
Pressure on passive side			
Passive at 4000 mm - soil 1	$p'_{p21} = 0.0 \text{ kN/m}^2$	Passive at 8000 mm - soil 1	p'_{p31} = 140.6 kN/m ²
Passive at 10000 mm - soil 1	p' _{p41} = 224.9 kN/m ²	Passive at 10000 mm - soil 2	p' _{p42} = 251.8 kN/m ²
Passive at 10913 mm - soil 2	p' _{p51} = 297.7 kN/m ²		

By iteration the depth at which the active moments equal the passive moments has been determined as 10912 mm as follows:-

Active moment about 10912 mm

Moment level 1	$M_{a11} = 94.6 \text{ kNm/m}$	Moment level 1	$M_{a12} = 582.5 \text{ kNm/m}$
Moment level 2	$M_{a21} = 394.1 \text{ kNm/m}$	Moment level 2	$M_{a22} = 558.0 \text{ kNm/m}$
Moment level 3	$M_{a31} = 147.6 \text{ kNm/m}$	Moment level 3	$M_{a32} = 156.8 \text{ kNm/m}$
Moment level 4	M _{a41} = 27.1 kNm/m	Moment level 4	$M_{a42} = 15.7 \text{ kNm/m}$

Passive moment about 10912 mm

Moment level 2	$M_{p21} = 0.0 \text{ kNm/m}$	Moment level 2	$M_{p22} = 1194.3 \text{ kNm/m}$
Moment level 3	$M_{p31} = 315.9 \text{ kNm/m}$	Moment level 3	$M_{p32} = 355.1 \text{ kNm/m}$
Moment level 4	$M_{p41} = 69.9 \text{ kNm/m}$	Moment level 4	$M_{p42} = 41.3 \text{ kNm/m}$

Total moments about 10912 mm

Total active moment $\Sigma M_a = 1976.5 \text{ kNm/m}$ Total passive moment $\Sigma M_p = 1976.5 \text{ kNm/m}$

Required pile length

Length reqd to balance mnts	H = 10912 mm	Depth of equal pressure	d _{contra} = 5282 mm
Add 20% below this point	d _{e_add} = 6757 mm	Minimum required pile length	H_{total} = 12038 mm

Pass - Provided length of pile greater than minimum required length of pile

CALCULATION OF SECTION PROPERTIES-305x305x240UC (Grade S355)

Tedds calculation version 2.0.07

Area

 $A = 303.81 \text{ cm}^2$

2nd moment of area

 $l_{uu} = 63.8 \times 10^3 \text{ cm}^4$ $l_{vv} = 20.3 \times 10^3 \text{ cm}^4$ $l_{xx} = 63.8 \times 10^3 \text{ cm}^4$ $l_{yv} = 20.3 \times 10^3 \text{ cm}^4$

Radius of gyration

 $r_{uu} = 145.0 \text{ mm}$ $r_{vv} = 81.8 \text{ mm}$ $r_{xx} = 14.5 \text{ cm}$ $r_{yy} = 8.2 \text{ cm}$

Plastic section modulus (only shapes with all rectangles at 90 degs)

 $S_{xx} = 4.22 \times 10^3 \text{ cm}^3$ $S_{yy} = 1.95 \times 10^3 \text{ cm}^3$

Distance to combined centroid

 $X_e = 0.0 \text{ mm}$ $Y_e = 0.0 \text{ mm}$

Design bending resistance moment - eq 6.13; $Mc,Rd = Mpl,Rd = Wpl,y \cdot fy / gM0 = 1465.2 kNm$ Design shear resistance - cl 6.2.6(2); $Vc,Rd = Vpl,Rd = Av \cdot (fy / \ddot{O}[3]) / gM0 = 1710 kN$

Based on the embedded retaining wall design calculation presented in the previous pages, the maximum bending and shear force as a result of the ULS design value of actions are as follows:

Med:1147KNm<Mpl,Rd =1465.2 kNm Bending Check OK Ved:989 KN< Vpl,Rd =1710 kN Shear Check OK

Deflection check for the pile section to be undertaken by the pile designer.