EMBEDED PILE WALL ANALYSIS & DESIGN In accordance with BS EN1997-1:2004 - Code of Practice for Geotechnical design and the UK National Annex Tedds calculation version 2.0.02 # **Design summary** #### **Combination 1** | Description | Unit | Provided | Required | Utilisation | Result | | |--|------|----------|----------|-------------|--------|--| | Total length required | mm | 14000 | 11069 | 1.265 | PASS | | | Maximum moment in pile 458.8 kNm/mx2.5m(King Post spacing)=1147KNm | | | | | | | | Maximum shear in pile 395.6 kN/mx2.5m(King Post spacing)=989KN | | | | | | | #### **Combination 2** | Description | Unit | Provided | Required | Utilisation | Result | | |--|------|----------|----------|-------------|--------|--| | Total length required | mm | 14000 | 12038 | 1.163 | PASS | | | Maximum moment in pile 431.2 kNm/mx2.5m(King Post spacing)=1078KNm | | | | | | | | Maximum shear in pile 353.6 kN/mx2.5m(King Post spacing)=884KN | | | | | | | ## Geometry | Length of pile provided | H _{pile} = 14000 mm | No. of different types of soil | $N_s = 2$ | |---------------------------|-------------------------------------|--------------------------------|----------------------------------| | Retained height | $d_{ret} = 4000 \text{ mm}$ | Unplanned excavation depth | $d_{ex} = 0 \text{ mm}$ | | Total retained height | d _s = 4000 mm | Angle of retained slope | β = 30.0 deg | | Water depth retained side | d _w = 8000 mm | Water depth retaining side | d _{wp} = 4000 mm | ## Loading Variable surcharge $p_{o,Q} = 5.0 \text{ kN/m}^2$ # Soil characteristic properties table | Soil | ϕ'_k (deg) | δ_k (deg) | γ_m (kN/m ³) | γ_s (kN/m ³) | h (mm) | |------|-----------------|------------------|---------------------------------|---------------------------------|--------| | 1 | 28.0 | 18.7 | 10.0 | 19.0 | 10000 | | 2 | 30.0 | 20.0 | 15.0 | 20.0 | 7000 | # Partial factors on actions - Section A.3.1 - Combination 1 | Perm. unfavourable action | $\gamma_{\rm G} = 1.35$ | Perm. favourable action | $\gamma_{G,f} = 1.00$ | |---------------------------|-------------------------|-------------------------|-----------------------| |---------------------------|-------------------------|-------------------------|-----------------------| Vari. unfavourable action $\gamma_Q = 1.50$ Angle of shearing resistance γ_{ϕ} = **1.00** Weight density γ_{γ} = **1.00** ## Design properties table - combination 1 | Soil | φ ' d | δ_{d} | γm.d | γs.d | Ka | Kp | |------|--------------|---------------------|------|------|-------|-------| | 1 | 28.0 | 18.7 | 10.0 | 19.0 | 0.823 | 5.151 | | 2 | 30.0 | 20.0 | 15.0 | 20.0 | 0.798 | 6.105 | | Tekla Tedds | Project Godre'graig School Spoil Options | | | Job no. 50084 | | | |--------------------|--|--------------------------|---------------|-------------------------|-------------|---------------| | Burroughs | Calcs for Embeded Retaining Wall | | | Start page no./Revision | | | | | Calcs by
BG | Calcs date
08/07/2021 | Checked by KJ | Checked date | Approved by | Approved date | ## Overburden on active side | OB at 0 mm - soil 1 | $OB'_{a11} = 7.5 \text{ kN/m}^2$ | OB at 4000 mm - soil 1 | $OB'_{a21} = 61.5 \text{ kN/m}^2$ | |-----------------------------|---|-----------------------------|---| | OB at 8000 mm - soil 1 | OB' _{a31} = 115.5 kN/m ² | OB at 10000 mm - soil 1 | OB' _{a41} = 140.3 kN/m ² | | OB at 10000 mm - soil 2 | $OB'_{a42} = 140.3 \text{ kN/m}^2$ | OB at 10065 mm - soil 2 | OB' _{a51} = 141.2 kN/m ² | | Overburden on passive side | | | | | OB at 4000 mm - soil 1 | $OB'_{p21} = 0.0 \text{ kN/m}^2$ | OB at 8000 mm - soil 1 | $OB'_{p31} = 40.0 \text{ kN/m}^2$ | | OB at 10000 mm - soil 1 | $OB'_{p41} = 58.4 \text{ kN/m}^2$ | OB at 10000 mm - soil 2 | $OB'_{p42} = 58.4 \text{ kN/m}^2$ | | OB at 10065 mm - soil 2 | $OB'_{p51} = 59.0 \text{ kN/m}^2$ | | | | Pressure on active side | | | | | Active at 0 mm - soil 1 | $p'_{a11} = 5.3 \text{ kN/m}^2$ | Active at 4000 mm - soil 1 | p' _{a21} = 43.8 kN/m ² | | Active at 8000 mm - soil 1 | p' _{a31} = 82.3 kN/m ² | Active at 10000 mm - soil 1 | p' _{a41} = 126.5 kN/m ² | | Active at 10000 mm - soil 2 | p' _{a42} = 123.5 kN/m ² | Active at 10065 mm - soil 2 | p'_{a51} = 125.0 kN/m ² | # Pressure on passive side | Passive at 4000 mm - soil 1 | $p'_{p21} = 0.0 \text{ kN/m}^2$ | Passive at 8000 mm - soil 1 | p'_{p31} = 206.0 kN/m ² | |------------------------------|--|------------------------------|--| | Passive at 10000 mm - soil 1 | p' _{p41} = 320.3 kN/m ² | Passive at 10000 mm - soil 2 | p' _{p42} = 376.1 kN/m ² | | | | | | Passive at 10065 mm - soil 2 p'_{p51} = **380.8** kN/m² # By iteration the depth at which the active moments equal the passive moments has been determined as 10065 mm as follows:- ## Active moment about 10065 mm | Moment level 1 | $M_{a11} = 93.3 \text{ kNm/m}$ | Moment level 1 | M_{a12} = 648.5 kNm/m | |----------------|---------------------------------------|----------------|--------------------------------| | Moment level 2 | $M_{a21} = 414.8 \text{ kNm/m}$ | Moment level 2 | M_{a22} = 559.5 kNm/m | | Moment level 3 | M _{a31} = 115.1 kNm/m | Moment level 3 | M_{a32} = 92.6 kNm/m | | Moment level 4 | $M_{a41} = 0.2 \text{ kNm/m}$ | Moment level 4 | $M_{a42} = 0.1 \text{ kNm/m}$ | | | | | | # Passive moment about 10065 mm | Moment level 2 | $M_{p21} = 0.0 \text{ kNm/m}$ | Moment level 2 | M_{p22} = 1400.5 kNm/m | |----------------|--------------------------------|----------------|---------------------------------| | Moment level 3 | M_{p31} = 288.2 kNm/m | Moment level 3 | M_{p32} = 234.5 kNm/m | | Tekla . Tedd | S Project | Project Godre'graig School Spoil Options | | | | Job no. 50084 | | |---------------------|-----------|--|------------|--------------|-------------------------|---------------|--| | Burroughs | Calcs for | Calcs for | | | Start page no./Revision | | | | | | Embeded Retaining Wall | | | ; | 3 | | | | Calcs by | Calcs date | Checked by | Checked date | Approved by | Approved date | | | | BG | 08/07/2021 | K.I | | | | | | Moment level 4 | $M_{p41} = 0.5 \text{ kNm/m}$ | Moment level 4 | $M_{p42} = 0.3 \text{ kNm/m}$ | |----------------|-------------------------------|----------------|-------------------------------| |----------------|-------------------------------|----------------|-------------------------------| #### Total moments about 10065 mm Total active moment $\Sigma M_a = 1924.0 \text{ kNm/m}$ Total passive moment $\Sigma M_p = 1924.0 \text{ kNm/m}$ #### Required pile length Length reqd to balance mnts H = 10065 mm Depth of equal pressure $d_{contra} = 5046 \text{ mm}$ Add 20% below this point $d_{e \text{ add}} = 6023 \text{ mm}$ Minimum required pile length $H_{total} = 11069 \text{ mm}$ ## Pass - Provided length of pile greater than minimum required length of pile #### Partial factors on actions - Section A.3.1 - Combination 2 Perm. unfavourable action $\gamma_G = 1.00$ Perm. favourable action $\gamma_{G,f} = 1.00$ Vari. unfavourable action $\gamma_Q = 1.30$ Angle of shearing resistance $\gamma_{\phi} = 1.25$ Weight density $\gamma_{\gamma} = 1.00$ # Design properties table - combination 2 | Soil | φ ' d | δ_{d} | γm.d | γs.d | Ka | Kp | |------|--------------|---------------------|------|------|-------|-------| | 1 | 23.0 | 15.1 | 10.0 | 19.0 | 0.877 | 3.516 | | 2 | 24.8 | 16.2 | 15.0 | 20.0 | 0.858 | 3.977 | # Overburden on active side | OB at 0 mm - soil 1 | $OB'_{a11} = 6.5 \text{ kN/m}^2$ | OB at 4000 mm - soil 1 | $OB'_{a21} = 46.5 \text{ kN/m}^2$ | |-------------------------|---|-------------------------|---| | OB at 8000 mm - soil 1 | $OB'_{a31} = 86.5 \text{ kN/m}^2$ | OB at 10000 mm - soil 1 | OB' _{a41} = 104.9 kN/m ² | | OB at 10000 mm - soil 2 | OB' _{a42} = 104.9 kN/m ² | OB at 10913 mm - soil 2 | OB' _{a51} = 114.2 kN/m ² | ## Overburden on passive side | OB at 4000 mm - soil 1 | $OB'_{p21} = 0.0 \text{ kN/m}^2$ | OB at 8000 mm - soil 1 | $OB'_{p31} = 40.0 \text{ kN/m}^2$ | |-------------------------|--|-------------------------|-----------------------------------| | OB at 10000 mm - soil 1 | OB' _{p41} = 58.4 kN/m ² | OB at 10000 mm - soil 2 | $OB'_{p42} = 58.4 \text{ kN/m}^2$ | | OB at 10913 mm - soil 2 | $OB'_{p51} = 67.7 \text{ kN/m}^2$ | | | # Pressure on active side Active at 0 mm - soil 1 $p'_{a11} = 4.9 \text{ kN/m}^2$ Active at 4000 mm - soil 1 $p'_{a21} = 35.3 \text{ kN/m}^2$ | Tekla Tedds | Project Godre'graig School Spoil Options | | | | Job no. 50084 | | |--------------------|--|-----------------------|------------|---------------------------|---------------|---------------| | Burroughs | Calcs for Embeded Retaining Wall | | | Start page no./Revision 4 | | | | | Calcs by
BG | Calcs date 08/07/2021 | Checked by | Checked date | Approved by | Approved date | | | | | | | | | | Active at 8000 mm - soil 1 | $p'_{a31} = 65.7 \text{ kN/m}^2$ | Active at 10000 mm - soil 1 | p' _{a41} = 99.3 kN/m ² | |------------------------------|--|------------------------------|--| | Active at 10000 mm - soil 2 | p' _{a42} = 97.6 kN/m ² | Active at 10913 mm - soil 2 | p' _{a51} = 113.5 kN/m ² | | Pressure on passive side | | | | | Passive at 4000 mm - soil 1 | $p'_{p21} = 0.0 \text{ kN/m}^2$ | Passive at 8000 mm - soil 1 | p'_{p31} = 140.6 kN/m ² | | Passive at 10000 mm - soil 1 | p' _{p41} = 224.9 kN/m ² | Passive at 10000 mm - soil 2 | p' _{p42} = 251.8 kN/m ² | | Passive at 10913 mm - soil 2 | p' _{p51} = 297.7 kN/m ² | | | By iteration the depth at which the active moments equal the passive moments has been determined as 10912 mm as follows:- # Active moment about 10912 mm | Moment level 1 | $M_{a11} = 94.6 \text{ kNm/m}$ | Moment level 1 | $M_{a12} = 582.5 \text{ kNm/m}$ | |----------------|--------------------------------------|----------------|---------------------------------| | Moment level 2 | $M_{a21} = 394.1 \text{ kNm/m}$ | Moment level 2 | $M_{a22} = 558.0 \text{ kNm/m}$ | | Moment level 3 | $M_{a31} = 147.6 \text{ kNm/m}$ | Moment level 3 | $M_{a32} = 156.8 \text{ kNm/m}$ | | Moment level 4 | M _{a41} = 27.1 kNm/m | Moment level 4 | $M_{a42} = 15.7 \text{ kNm/m}$ | ## Passive moment about 10912 mm | Moment level 2 | $M_{p21} = 0.0 \text{ kNm/m}$ | Moment level 2 | $M_{p22} = 1194.3 \text{ kNm/m}$ | |----------------|---------------------------------|----------------|----------------------------------| | Moment level 3 | $M_{p31} = 315.9 \text{ kNm/m}$ | Moment level 3 | $M_{p32} = 355.1 \text{ kNm/m}$ | | Moment level 4 | $M_{p41} = 69.9 \text{ kNm/m}$ | Moment level 4 | $M_{p42} = 41.3 \text{ kNm/m}$ | ## Total moments about 10912 mm Total active moment $\Sigma M_a = 1976.5 \text{ kNm/m}$ Total passive moment $\Sigma M_p = 1976.5 \text{ kNm/m}$ # Required pile length | Length reqd to balance mnts | H = 10912 mm | Depth of equal pressure | d _{contra} = 5282 mm | |-----------------------------|-------------------------------------|------------------------------|--------------------------------------| | Add 20% below this point | d _{e_add} = 6757 mm | Minimum required pile length | H_{total} = 12038 mm | Pass - Provided length of pile greater than minimum required length of pile #### **CALCULATION OF SECTION PROPERTIES-305x305x240UC (Grade S355)** Tedds calculation version 2.0.07 #### Area $A = 303.81 \text{ cm}^2$ ## 2nd moment of area $l_{uu} = 63.8 \times 10^3 \text{ cm}^4$ $l_{vv} = 20.3 \times 10^3 \text{ cm}^4$ $l_{xx} = 63.8 \times 10^3 \text{ cm}^4$ $l_{yv} = 20.3 \times 10^3 \text{ cm}^4$ Radius of gyration $r_{uu} = 145.0 \text{ mm}$ $r_{vv} = 81.8 \text{ mm}$ $r_{xx} = 14.5 \text{ cm}$ $r_{yy} = 8.2 \text{ cm}$ Plastic section modulus (only shapes with all rectangles at 90 degs) $S_{xx} = 4.22 \times 10^3 \text{ cm}^3$ $S_{yy} = 1.95 \times 10^3 \text{ cm}^3$ Distance to combined centroid $X_e = 0.0 \text{ mm}$ $Y_e = 0.0 \text{ mm}$ Design bending resistance moment - eq 6.13; $Mc,Rd = Mpl,Rd = Wpl,y \cdot fy / gM0 = 1465.2 kNm$ Design shear resistance - cl 6.2.6(2); $Vc,Rd = Vpl,Rd = Av \cdot (fy / \ddot{O}[3]) / gM0 = 1710 kN$ Based on the embedded retaining wall design calculation presented in the previous pages, the maximum bending and shear force as a result of the ULS design value of actions are as follows: Med:1147KNm<Mpl,Rd =1465.2 kNm Bending Check OK Ved:989 KN< Vpl,Rd =1710 kN Shear Check OK Deflection check for the pile section to be undertaken by the pile designer.